‏260.00 ₪

Algebraic Topology

‏260.00 ₪
ISBN13
9780521795401
מהדורה
1
הוצאה לאור
Cambridge
עמודים / Pages
544
פורמט
Paperback / softback
תאריך יציאה לאור
3 בדצמ׳ 2001
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
מידע נוסף
מהדורה 1
עמודים / Pages 544
פורמט Paperback / softback
ISBN10 0521795400
הוצאה לאור Cambridge
תאריך יציאה לאור 3 בדצמ׳ 2001
תוכן עניינים

Part I. Some Underlying Geometric Notions:

  1. 1. Homotopy and homotopy type

  2. 2. Deformation retractions

  3. 3. Homotopy of maps

  4. 4. Homotopy equivalent spaces

  5. 5. Contractible spaces

  6. 6. Cell complexes definitions and examples

  7. 7. Subcomplexes

  8. 8. Some basic constructions

  9. 9. Two criteria for homotopy equivalence

  10. 10. The homotopy extension property

Part II. Fundamental Group and Covering Spaces:

  1. 11. The fundamental group, paths and homotopy

  2. 12. The fundamental group of the circle

  3. 13. Induced homomorphisms

  4. 14. Van Kampen's theorem of free products of groups

  5. 15. The van Kampen theorem

  6. 16. Applications to cell complexes

  7. 17. Covering spaces lifting properties

  8. 18. The classification of covering spaces

  9. 19. Deck transformations and group actions

  10. 20. Additional topics: graphs and free groups

  11. 21. K(G,1) spaces

  12. 22. Graphs of groups

Part III. Homology:

  1. 23. Simplicial and singular homology delta-complexes

  2. 24. Simplicial homology

  3. 25. Singular homology

  4. 26. Homotopy invariance

  5. 27. Exact sequences and excision

  6. 28. The equivalence of simplicial and singular homology

  7. 29. Computations and applications degree

  8. 30. Cellular homology

  9. 31. Euler characteristic

  10. 32. Split exact sequences

  11. 33. Mayer–Vietoris sequences

  12. 34. Homology with coefficients

  13. 35. The formal viewpoint axioms for homology

  14. 36. Categories and functors

  15. 37. Additional topics homology and fundamental group

  16. 38. Classical applications

  17. 39. Simplicial approximation and the Lefschetz fixed point theorem

Part IV. Cohomology:

  1. 40. Cohomology groups: the universal coefficient theorem

  2. 41. Cohomology of spaces

  3. 42. Cup product the cohomology ring

  4. 43. External cup product

  5. 44. Poincaré duality orientations

  6. 45. Cup product

  7. 46. Cup product and duality

  8. 47. Other forms of duality

  9. 48. Additional topics the universal coefficient theorem for homology

  10. 49. The Kunneth formula

  11. 50. H-spaces and Hopf algebras

  12. 51. The cohomology of SO(n)

  13. 52. Bockstein homomorphisms

  14. 53. Limits

  15. 54. More about ext

  16. 55. Transfer homomorphisms

  17. 56. Local coefficients

Part V. Homotopy Theory:

  1. 57. Homotopy groups

  2. 58. The long exact sequence

  3. 59. Whitehead's theorem

  4. 60. The Hurewicz theorem

  5. 61. Eilenberg–MacLane spaces

  6. 62. Homotopy properties of CW complexes cellular approximation

  7. 63. Cellular models

  8. 64. Excision for homotopy groups

  9. 65. Stable homotopy groups

  10. 66. Fibrations the homotopy lifting property

  11. 67. Fiber bundles

  12. 68. Path fibrations and loopspaces

  13. 69. Postnikov towers

  14. 70. Obstruction theory

  15. 71. Additional topics: basepoints and homotopy

  16. 72. The Hopf invariant

  17. 73. Minimal cell structures

  18. 74. Cohomology of fiber bundles

  19. 75. Cohomology theories and omega-spectra

  20. 76. Spectra and homology theories

  21. 77. Eckmann-Hilton duality

  22. 78. Stable splittings of spaces

  23. 79. The loopspace of a suspension

  24. 80. Symmetric products and the Dold–Thom theorem

  25. 81. Steenrod squares and powers

Appendix: topology of cell complexes

 

Author Allen Hatcher